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Objectives

Understand the problem of minimizing a complex
loss function

Understand the consequences of overfitting a
neural network

Understand the mechanisms that can help us avoid
overfitting

Apply the “generic” Machine-Learning model
selection methodology to neural networks using
training, validation, and test datasets
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The Gradient descent game

TIME: 1
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https://www.i-am.ai/gradient-descent.html

The path towards the minimum

The gradient descent towards the minimum is often illustrated in 3D
space [left] or using level curves (contour plots) [right] as follows:
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Gradlent descent by
Backpropagation
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"Learning” stops when the derivative equals zero
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Backpropagation with momentum

Momentum is a physical property that enables a particular object
with mass to continue in it's trajectory even when an external
opposing force is applied. In the context of neural networks, the
idea behind this “trick” is to add a momentum to the weight
adaptation.
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Learning rate = 0.004, Momentum = 0.0

() Starting Point

Learning rate = 0.003, Momentum = 0.7 Learning rate = 0.003, Momentum = 0.85

https://distill.pub/2017/momentum/
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https://distill.pub/2017/momentum/

Gradient computation flavors

Batch gradient descent: when the gradient is calculated from
the entire data set

Stochastic gradient descent: when the gradient is calculated
from a single data sample.

Gradient Descent Stochastic Gradient Descent

)| (e
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Mini-batch gradient descent

In practice we frain a neural network using a stochastic
approximation of the exact gradient (calculated from the
entire data set) by an estimate calculated from a randomly
selected subset of the data, called a mini batch.

Especially in high-dimensional optimization problems this
reduces the very computational burden, achieving faster
iterations in trade for a lower convergence rate.

mini-batches \
—> gradient —> AW
—> gradient —> AW

train
database

—> gradient —> AW

/
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Learning process: loss function
minimization
O Evolution of the loss (e.g., mse) as a function of the number of

epochs when using the exact gradient (GD), the Stochastic
Gradient Descent (SGD) and the mini-batch* approach.

Mini-batch GD
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* the batch size is another hyper-parameter that can be tuned
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O Popular gradient descent methods are:

O Stochastic Gradient Descent (SGD): it is basically mini-
batch Backprop with momentum

O Root Mean Square Propagation (RMSprop): I read
somewhere that it is useful to establish a baseline of

performance
Adam: Adaptive Moment Estimation:

m(w,t) :=y *m(w,t — 1) + (1 — 1) * VQ; (w)
v(w,t) =y xv(w,t — 1)+ (1 — 72) * (VQ,‘(w))2
m(w,t)

(1-1)

o a(wt)

D=0

wi=w— il * m(w, t)

v(w,t) +€

m(w,t) :=

* ML libraires refer to these algorithms as optimizers
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Gradient descent methods (2)

SGD
Momentum
NAG
Adagrad
Adadelta
Rmsprop
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Practical considerations (1)

Topology: number of layers, number of hidden neurons in
each hidden layer (complexity of the model)

Activity function: sigmoid, tanh, exp (Radial Basis
Functions), ReLu

Weight Initialisation: if too small, all units do the same, if

too big, the sigmoid/tanh saturates | L
U I

Learning rate: Lf : de
Y ¥ \
> T

E(w) E(w)

U )\j
N = Nopt T > 1 opt T]>2'nm|:rl

Y. LeCuwn, 2006
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Practical considerations (2)

Input normalization

Neural networks might behave badly if the individual features do
not more or less look like standard normally distributed data:
Gaussian with zero mean and unit variance.

Encoding categorical data

e.g., given an input with two possible values high and low productivity
-> use i-of-C coding: (1,0) and (0,1)
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Practical considerations (3)

Class imbalance problem: under-sample or over-sample to balance

the set sizes for all classes.

a

09 0 o o2 0 o

o0 %0 0 o o %0 0 0

x000,° x00 % o
x0_ o
x%,0 5 0

OXOO
Ky 0 00 ) |00, °
o Oxoxooo o ooxooo o
Xxxx30 0o X XXg 0 0 0 X XXo0 00
XX0 ° o d XX0y, 000 O OVEr- |*%0y,000 0 0o
x000 B0 Uunoer- X o o x xX8% 0 ° X Xy, 0 0 O
X [ . S
sample

X Xy' 0 0
sampLe

from Longadge et al, 2013

O weighted loss training: an alternative to deal with unbalanced
classes is to give more credit to the minority class when
computing the loss (implemented in the libraries)
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Topologies for classification and
regression

* softmax if more than

/ two classes
sigm() or tanh() /
i s

]

sigm() or tanh()

Y * .
igm() or tanh()
L Yi

yj linear

classification network regression network

loss: cross-entropy loss: mse
CE = - >p dp log(yp)
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Effect of the number of hidden neurons (1)

the risk of overfitting

Two-class data points
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Effect of the number of hidden neurons (2)

Modéle linéaire B R
réseau a 4 neurone(s)

optimal
optimal

0

MLP 2-4-1

réseau a 10 neurone(s)

Linear classification

réseau a 8 neurone(s)

décision
optimal

MLP 2-8-1 APE 2024 MLP 2-10-1 ©F. Rossi, INRIA




Effect of the number of hidden neurons (3)

réseau a 16 neurone(s)

Comparaison des modéles

4 ’ 44’* Dorjnccs ‘
validatiown ervor e

-2

MLP 2-16-1

Taux d'erreur

réseau a 20 neurone(s)

training error

Complexité du modéle

MLP 2-20-1
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Effect of the number of hidden neurons (4)

regression problem

Linear model

MLP 1-2-1 APE 2024 MLP 1-4-1 ©F. Rossi, INRIA




Comparaison des modéles

valtdation error

MLP 1-8-1

m neurone(s)

training error

Complexité du modéle

MLP 1-10-1
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Bias-variance tradeoff

O bias: systematic error of the model

O variance: sensibility of the model

high bias, Low
vartance

Low bias, high
varitance

good bias-variance trade-off
APE 2024




Avoiding overfitting

The more complex (flexible) the model is, the less bias
it has (e.g., it can better learn the training data).

However, the more complex the model, the higher
variance (sensibility) it exhibits

Some tricks fo avoid overfitting:
O Early stopping
O Regularization

O Data augmentation
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Early stopping

e
e

DB | 25% validation set .
L ] ! validation error
DB 0 i e
75% training set

N

“data splitting” training error early stopping

We setup a large number of iterations, but monitor the
evolution of learning and validation errors to stop the
training whenever the validation error starts to increase
too much (early stopping patience parameter)
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Regularization

Regularization refers to providing constraints to limit the values
of the parameters we are learning (e.g., the weights).

We modify the loss or error function that Backpropagation is
trying fo minimize by adding a penalty term.

Weight decay (or L2): avoid large weight values

pénalité =1/2y [wg]@]z
ijk /

Modified objective function:E = E + \pénalité

another h yper-parameter : (

(k)
y

Aw(t) = {terme standard} - niw
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Data augmentation

O A simple way to avoid overfitting consists on adding some
noise to the input data to avoid the learning "by heart” of
the available examples

fout

A
u Xin + noise yout Terreur

{xin, Tout}

/ \ desired

training pattern outputs
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Model selection

poee on ce
OP\' \m\ZG\" Perfor man

- forfeachicontig: selected model

perform cross-validation

set of model “configs”
number of layers - \/
neurons per layer
learning rate
momentum term

number of epochs
etc...

final
performance

e.g., 4-fold cross-validation
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