
5. NEURAL NETWORKS
MONITORING

Stephan Robert-Nicoud
HEIG-VD/HES-SO

APPRENTISSAGE PAR RESEAUX DE NEURONES ARTIFICIELS

Credit: Andres Perez-Uribe

APE 2024

Objectives

Understand the effect of hyper-parameters in a
model

Understand how to monitor the training of a neural
network during the hyper-parameter tuning
process

Apply the “generic” Machine-Learning model
selection methodology to neural networks using
training, validation, and test datasets

APE 2024

Data-driven modeling methodology
What sort of data do I have ? is it noisy ? do I have
missing data ? outliers ? redundant variables ?

Exploratory analysis of data

variable selection, noise reduction, outlier filtering

Do I have variables whose values are in very different
ranges ?

Data normalization

Do I have an unbalanced dataset (number of examples
per class) ?

APE 2024

Create a train-validation-test partition of the dataset

Baseline of neural network performance

identify number of epochs and learning rate using
a first ANN configuration

Neural network model selection

cross-validation evaluation using different hyper-
parameters (e.g., number of hidden neurons)

Compute final performances using the test dataset

APE 2024

Data normalization (1)

Data normalization is needed if variables have different
ranges. The simplest way to deal with this problem is to re-
scale inputs using:

 x′ =
(x − xmin)

(xmax − xmin)
 x′ = 2

(x − xmin)
(xmax − xmin)

− 1

Rescaled into [0,1] range Rescaled into [-1,1] range

But, we should only use the training dataset to compute the
minimum and maximum values.

APE 2024

Data normalization (2)
MinMax scaler faces a problem when the data contains
outliers:

from https://developers.google.com/machine-learning/data-prep/transform/normalization

We have to first filter-out outliers or if there are not too
many outliers use a z-normalization:

where is the mean and the st-devμ σ
 x′ =

(x − μ)
σ

https://developers.google.com/machine-learning/data-prep/transform/normalization

APE 2024

Weight initialization

zero initialization: this places us somewhere in the loss
error function we want to minimize. If every time we start
in the same place, we may always face the same difficulties
to get to the minimum. Moreover, if all weights are equal,
all neurons in the first layer will compute the same thing…
in conclusion it is a bad idea.

small random numbers: it has been proposed that weights
should be initialized to small random values scaled by a
function of the number of inputs (n), as follows:

w = np.random.randn(n) * sqrt(2.0/n)

from https://cs231n.github.io/neural-networks-2/

APE 2024

Effect of learning rate
With low learning rates (blue line) the improvements look linear.
With high learning rates they will start to look more exponential.

Higher learning rates will decay the loss faster, but they get
stuck at worse values of loss (green line).

from https://cs231n.github.io/neural-networks-3/

APE 2024

Hyper-parameter tuning
• Rule of thumb: try several log-spaced values (0.1,

0.01, 0.001) and narrow the grid search to the
region where you obtain the lowest validation error.

• For some parameters use the *3 strategy: e.g.,
number of hidden neurons: 1, 3, ~10, 30 …

• Scikit-learn implements GridSearchCV and
RandomizedSearchCV

• Keras implements KerasTuner for hyperparameter
tuning

• AutoML: the process of automating the development
of a ML solution

APE 2024

Model selection

set of model “configs”

- number of layers

- neurons per layer

- learning rate

- momentum term

- number of epochs

- etc…

hyper-pa
rameters

for each config :

 repeat_several_times*

 perform cross-validation
data

e.g., 4-fold cross-validation

performance

* we may need to try the response of the model for different weight initializations

APE 2024

Monitoring ANN training (1)
underfitting, probably because the model is too simple (left) or because

there is a need for more training iterations (right).

from https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

APE 2024

Monitoring ANN training (2)
loss vs epochs plot: overfitting, probably because the model is too
complex; there is an increasing gap between the evolution of the

loss evaluated on the training dataset and the loss evaluated on the
validation dataset

from https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

APE 2024

Monitoring ANN training (3)

good fit; the loss function reaches a point of stability and there is a
small gap between the training and the validation errors

from https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

APE 2024

Monitoring ANN training (4)
Unrepresentative training dataset: it does not provide sufficient

information to learn the problem (e.g., too few examples or training
data exhibits low diversity)

from https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

APE 2024

Monitoring ANN training (5)
Unrepresentative validation dataset. Here a randomly initialized

model (epoch=0) performs similarly (on the validation dataset) to
models that have been trained, even after 100 epochs.

from https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

APE 2024

Monitoring ANN training (6)
Unrepresentative validation dataset. Here, surprisingly the

performance of the model on the validation dataset is better than on
the training one. This means the validation dataset is too easy

compared to the learning problem represented by the training dataset.

from https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

