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Objectives

Understand the effect of hyper-parameters in a 
model 


Understand how to monitor the training of a neural 
network during the hyper-parameter tuning 
process


Apply the “generic” Machine-Learning model 
selection methodology to neural networks using 
training, validation, and test datasets 
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Data-driven modeling methodology
What sort of data do I have ? is it noisy ? do I have 
missing data ? outliers ? redundant variables ?


Exploratory analysis of data


variable selection, noise reduction, outlier filtering


Do I have variables whose values are in very different 
ranges ?


Data normalization


Do I have an unbalanced dataset (number of examples 
per class) ?
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Create a train-validation-test partition of the dataset


Baseline of neural network performance


identify number of epochs and learning rate using 
a first ANN configuration


Neural network model selection


cross-validation evaluation using different hyper-
parameters (e.g., number of hidden neurons)


Compute final performances using the test dataset
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Data normalization (1)

Data normalization is needed if variables have different 
ranges. The simplest way to deal with this problem is to re-
scale inputs using: 

 x′ =
(x − xmin)

(xmax − xmin)
 x′ = 2

(x − xmin)
(xmax − xmin)

− 1

Rescaled into [0,1] range Rescaled into [-1,1] range

But, we should only use the training dataset to compute the 
minimum and maximum values.
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Data normalization (2)
MinMax scaler faces a problem when the data contains 
outliers: 

from https://developers.google.com/machine-learning/data-prep/transform/normalization

We have to first filter-out outliers or if there are not too 
many outliers use a z-normalization:


where  is the mean and  the st-devμ σ
 x′ =

(x − μ)
σ

https://developers.google.com/machine-learning/data-prep/transform/normalization
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Weight initialization

zero initialization: this places us somewhere in the loss 
error function we want to minimize. If every time we start 
in the same place, we may always face the same difficulties 
to get to the minimum. Moreover, if all weights are equal, 
all neurons in the first layer will compute the same thing… 
in conclusion it is a bad idea.


small random numbers: it has been proposed that weights 
should be initialized to small random values scaled by a 
function of the number of inputs (n), as follows:


w = np.random.randn(n) * sqrt(2.0/n)

from https://cs231n.github.io/neural-networks-2/
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Effect of learning rate
With low learning rates (blue line) the improvements look linear. 
With high learning rates they will start to look more exponential. 

Higher learning rates will decay the loss faster, but they get 
stuck at worse values of loss (green line).

from https://cs231n.github.io/neural-networks-3/
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Hyper-parameter tuning
• Rule of thumb: try several log-spaced values (0.1, 

0.01, 0.001) and narrow the grid search to the 
region where you obtain the lowest validation error. 


• For some parameters use the *3 strategy: e.g., 
number of hidden neurons: 1, 3, ~10, 30 … 


• Scikit-learn implements GridSearchCV and 
RandomizedSearchCV


• Keras implements KerasTuner for hyperparameter 
tuning


• AutoML: the process of automating the development  
of a ML solution
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Model selection

set of model “configs”

- number of layers

- neurons per layer

- learning rate

- momentum term

- number of epochs

- etc…

hyper-pa
rameters

for each config :

   repeat_several_times*


  perform cross-validation
data

e.g., 4-fold cross-validation

performance

* we may need to try the response of the model for different weight initializations
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Monitoring ANN training (1)
underfitting, probably because the model is too simple (left) or because 

there is a need for more training iterations (right).

from https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
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Monitoring ANN training (2)
loss vs epochs plot: overfitting, probably because the model is too 
complex; there is an increasing gap between the evolution of the 

loss evaluated on the training dataset and the loss evaluated on the 
validation dataset 

from https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
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Monitoring ANN training (3)

good fit; the loss function reaches a point of stability and there is a 
small gap between the training and the validation errors

from https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
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Monitoring ANN training (4)
Unrepresentative training dataset: it does not provide sufficient 

information to learn the problem (e.g., too few examples or training 
data exhibits low diversity)

from https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
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Monitoring ANN training (5)
Unrepresentative validation dataset. Here a randomly initialized 

model (epoch=0) performs similarly (on the validation dataset) to 
models that have been trained, even after 100 epochs.

from https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/



APE 2024

Monitoring ANN training (6)
Unrepresentative validation dataset. Here, surprisingly the 

performance of the model on the validation dataset is better than on 
the training one. This means the validation dataset is too easy 

compared to the learning problem represented by the training dataset. 

from https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/


